A multilayer exponential random graph modelling approach for weighted networks
نویسندگان
چکیده
منابع مشابه
Exponential random graph models for affiliation networks
Statistical modeling of social networks as complex systems has always been and remains a challenge for social scientists. Exponential family models give us a convenient way of expressing local network structures that have sufficient statistics for their corresponding parameters. This kind of model, known as Exponential Random Graph Models (ERGMs), or p∗ models, have been developed since the 198...
متن کاملExponential random graph models for multilevel networks
Modern multilevel analysis, whereby outcomes of individuals within groups take into account group membership, has been accompanied by impressive theoretical development (e.g. Kozlowski and Klein, 2000) and sophisticated methodology (e.g. Snijders and Bosker, 2012). But typically the approach assumes that links between groups are non-existent, and interdependence among the individuals derives so...
متن کاملExponential random graph models for networks with community structure
Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop a...
متن کاملExponential Random Graph ( p * ) Models for Social Networks
Article outline: Glossary I. Definition I
متن کاملExponential Random Graph Modeling for Complex Brain Networks
Exponential random graph models (ERGMs), also known as p* models, have been utilized extensively in the social science literature to study complex networks and how their global structure depends on underlying structural components. However, the literature on their use in biological networks (especially brain networks) has remained sparse. Descriptive models based on a specific feature of the gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2020
ISSN: 0167-9473
DOI: 10.1016/j.csda.2019.106825